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The investigation deals with Integral equations arising In certain mixed 
problems In plane elasticity, In particular plane contact problems concerned 
with the action of a rigid punch on an elastic layer located on a rigid sub- 
strate. The entire study is devoted to the construction of solutions to 
Equation (1.1) when the parameter a Is large. Exact solutions to (1.1) 
are obtained In the form of series which hold for tP< a < m . A corollary 
to the results obtained here provides a rigorous basis for the method given 
in Cl]. Illustrative examples are given. 

1, Consider the Integral equation 

a 

s 
’ k (x - E) qn (E) d5 = zrze*n* (isI< Imq=O) (~.I) 
-a 

whose kernel is of the form 

k (t) = 5 T cos tu da (1.2) 
0 

Here, L-(%)/U Is an even function which is real on the real axis and 

meromorphlc on the complex plane. 

The function t(a)/a may be represented in the complex plane In the form 

L (2) - p (4 
2 

- = K (2) 
Q (z) (1.3) 

where P(r) and p(r) are entire functions with the asymptotic form of their 

zeros given by 

zn - * i (@n, + b) f cl In n, tn - f i (fir2 + g) f c, In n (n + 00) (1.4) 

All constants in (1.4) are real. It Is assumed that the function L(r)/2 

has the following properties: 



limL= A 
z for z--+ 0, for 2 --f co) O<r<l (1 A) 

Property (1.5) Imposes the following Interrelations among the constants 

8, b, 4 and Y 
2 (b - 6) = Pr for Cl + 0, C% # 0 

b-_g=Pr for Cl =o, ca = 0 (1.6) 

Assume that the zeros z, and 6. are distinct. In the case of multiple 

roots or In case the asymptotic roots are somewhat different from (1.3), all 

of the results established below may be obtained In the same manner. 

It Is shown below that solution of Wiener-Hopf equation 
03 

c 
k(s - Qfn(E)dE = ne*nX (O\(Sd~) (1.7) 

;, 
results In the solution to an infinite system of linear algebraic equations 

(I) 

Thereupon, having obtained the general form of the asymptotic solution of 

(1.1) for a - m , we will show,that to obtain a solution to another Infinite 

system of linear algebraic equations (II) which Is perturbed about (I), we 

must transform It Into (I). Accomplishing the transformation by the method 

of successive approximations, we obtain the exact solution to Equation (1.1) 

for a* a< m . 

2. Let us note 'certain properties of the kernel k(t) defined In (1.2). 

Utilizing the 

respectively for 

the kernel k(t) 

the kernel k(t) 

properties of Fourier Integrals, It may be shown that 

k (t) = 0 (F-l), k (t) = 0 (In t) (2.1) 

0.c y < 0.5 and y - 0.5 for t + 0 . In case 0.5< y<l, 

will be continuous. With the aid of the residue theory, 

may be written In the form 

03 

k (t) = 2 sp exp ic,t 
I.=1 

(sr = nip (&I [Q’ Kdl-‘) (2.2) 

with the series converging uniformly for all t , except for t = 0 with 

O< y 5 0.5 , In which case It has an Integrable singularity. 

Employing the Wiener-Hopf method, we will now obtain the solution to the 

Integral equation (1.7) C23, which may be written as 

frl (t) = ein’[K (q)]-’ + $j CL (q) exp iz& (I ‘k I< 1 $+I 1, i6ki<1tk+li) (2*3) 
1=1 

Here 

cl(q) = [K+ (rl)1-' r@l -22) K+'(- z*1-’ 

fi (i+a/zk)expia/(%k 

K+ (a) = 1/X ‘zl 

lI (l+a/Ck)expia/pk 
k=l 

(2.4) 
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i! (1--u/Qexp(-ui/@k) 

K_ (CX) = f/A kzl 

k=l 

with at and Cr located In the upper half-plane. 

Note that (2.3) and (2.4) hold for the following values of TI : 

(2.4) 

Im q >, - Im II, q # 21 

By making use of the known properties of Laplace transforms, It may be 

shown that fn (t) -=. 0 (t-‘) (t + 0) (2.5) 

The latter is established by Investigating the asymptotic properties of 

the Laplace transform of the function f,,(t) and making use of the estimate 

K+ (4 = 0 [ rk(l+g/p-i=/P) 
rk(l+blR--ialP) I (a-+m, jl/zn-aargaI<n) (2.6) 

with k = 2 In the first case of (1.6) and k = 1 In the second case; f(x) 

IS Euler's gannna function. 

We now rewrite Integral equation (1.7) employing the form of the kernel 

k(x - 5) given by (2.2) and the form of the solution f,,(E) given by (2.3), 

and Integrate the result, bringing the integral sign inside the double sum- 

mation sign. The Justification for this procedure lies In the fact that 

there Is only a finite number of points at which the series is not uniformly 

convergent, and at these points the function Is integrable. 

The result thus obtained Is 

Ccl 

5 k(x--g)f&)d~ = -&$ &expiw+ 
0 ?-=I p 

+ 2ii cz (7) (fJ &) exp iax - 
Z=l r=1 p 

00 

- ix Sr 
l-=1 

( & c&q + i &) exp i6,x 
P I=1 p 

(2.7) 

The summation of the series in the first term In (2.7) may be found in 

the following manner: 

(2.8) 

Here the asymptotic behavior of the zeros of (1.4) has been taken into 

account. 



The right-hand side of (2.7) must be equal to nei"r, inasmuch as f,,(5) 

In an exact solution of Integral equation (1.7). Hence, takln(_ Into XC~XW~ 

(2.81, we have the Identity 

m 

- (2.9) 

In view of the linear independence of the functions eXp izlx and CXP i&.X, 

the i~ediately preceding identity yields directly 

(1 = 1, 2, . . .) 

(r == 1, 2, . ..) (2.11) 

Thus, if fn (z) 1 s a solution of integral equation (1.7), the coefficients 

~(11) satisfy the infinite system of equations (2.11), together wlth (2.10). 

We will now determine the general form of the solution q,,(x) to the 

Integral equation (1.1). Namely, we will show that It takes the form 

%3(z) = &(a, ll)eiqx + g, t&+ (a, q)axP izk(a+ x) + 

4- Bk_(U, rl) exp&c@--)I (2.12) 

As a prellmlnary step, we will examine the result of substituting the 

zeroth term In the asymptotic form [l] Into Integral equation (1.1) 

qlp (4 = e-iraf3 (a + s) + eigaf-,, (a - 2) - K-’ (7) ef*x. (2.13) 

The substitution of Q,," (3) into (1.1) and Integration, taking Into account 
(2.8), (2.10) and (2.11), yields 

ll 

!I 
m E (5 - El 471° (El dE = 

-a 

Let us examine the integral equation satisfied by the remainder of the 

terms in the aaymptotlc expansion entering (1.1). Writing the remainder of 
the terms in the form 

4,* (4 = 9, (4 - 9,O (4 (2.15) 
(here qll (2) is the exact solution of (l.l)), we obtain, upon substitution 

into (l.l), 



+ cz (--- rl) @XP ricr (a + 4 + We (2.16) 

We now apply, in turn, to (z.16) the method of separating the zeroth term 

of the asymptotic expansion (11. This may be accomplished by solving the 

integral equation 

co 

5 
k(c-- E) jr, (E) 4i = a exp Gx W\(Z<~) (2.17) 

0 

Note that the zeroth term of the asymptotic expansion in the solution of 

(2.16), whose index will be one in the solution to Equation (l.l), will be 

found to contain a small parameter of the form exp 2aizl. 

The solution of the integral equation (2.17) may be obtained with the aid 

of (2.3) and (2.4), replacing q with 6, , whereupon the solution will be, 

as before, a combination of the functions exp iqt. In the same manner, it 

may be found that all subsequent terms in the asymptotic solution q,, (z) will 

have the same structure, since each step will require the solution of an 

equation of the form (2.17). 

Thus, Formula (2.12) is proven. 

It is now necessary to determine the coefficients 

and ~;(a, n) in the expansion (2.12). We will show 
Bo(a, v), &+(a, q) 
that these coefficients 

satisfy some inflnlte system of linear algebraic equatrons (II). For this 

purpose, we substitute qn (x), in the form given In (2.12) into integral equa- 

tion (l.l), and take k(t) in the form (2.2). Upon Integration, and taking 

Into account (2.8) and (2,10), we obtain 

We now require that the right-hand side of (2.18) equals neinX . This 

leads to the following conditions 

Bo(d, ro = K_'(V) 

(2.19) 
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If we can find the B1' (a, 7) and Bl-(a, ?l), which satisfy the Infinite 
system (2.19), we will have obtained the solution to Equation (1.1). 

Comparing the second and third systems of equations in (2.19), we obtain 

&+(a, rl)= &-(a, -q) (2.20) 

Define 

x$ = Bf+ (a, $*&-(a, q) (2.21) 
Addition and subtraction of the second and third systems of equations In 

(2.19) leads to the conclusion that, In order to find the solution of Equa- 

tion (l.l), St is sufficient to obtain the solution of an infinite system Of 

equations of the form (case x8') 

(II) 5 (+-+ + yp) xi+ht:Rtj-~~)+e+‘“nl(~) = 0 {r zz i, 2, . . .) (2.22) 
I=1 r il-+rl 

Hereinafter, in addition to (2.11), it will be necessary to consider a 

system of the form (2.11) but with n - C, . Constructing the above system 

of equations similarly to (2.11), we obtain 

The 

(2.11) 

3. 

problem may now be stated as follows: given the solutions to sYStem8 

and (2.23), find the ;tl in system (2.22). 

Let us write the problem In matrix form. Introduce the notation 

By utillzfng (1.4), (2.4) and (2.6), together with the properties of 

Euler's gamma functions, the fol.lowlng estimates are obtained: 

~R(~~)~X+CC = o(~y-l), 1 rk, rjk-+m = o(kY-l), / %c, *~c+co= O(F) (3.2) 

The second estimate in (3.2) is for fixed P ; the third estimate is for 

fixed k . We now Introduce the matrices 

A = (GJ), B(a) = (b,,l), --"A = (Q,), D = (dr) (3.3) 

as well as the column matrices X = (q) and X, = (xtO(q)) 

The problem formulated at the end of Section 2 may now be stated as fol- 

lows. 

To find a coluem matrix & satisfying the equation 

(A + B (u))X = D 
if we are given the column matrix x0 satlsf'ying 

AX,=D 

(3.4) 

(3.5) 
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as well as -'A , the right-hand Inverse of A , I.e. 

A.-'&4 = 1 

where I is the unit matrix. 

Note that the matrix B(a) ,obvlously has the following property 

B (4 -10 (a-,00) (0 Is the zero matrix) 

Reformulate (3.4) In terms of Y , which is defined by 

X=X,$Y 

so that we obtain, with the aid of (3.5), 

AY= -B (a)Y - B (a)X, 

We seek a solution In the form 

Y = -‘AZ 

(2 is a new unknown), and utilize (3.6) to obtain 

Z= -B (a).-‘AZ -B (a)X,, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Note that, In order to make use of the right inverse employed In obtaln- 

lng (3.10), It Is necessary to prove [3] the associative property of the pro- 

duct A-IA2 . However, we can show that this operation is permissible wlth- 

out proving the associative property, by an investigation of the subsequent 

terms In the asymptotic series, obtained from Equation (2.16). Thus, Pormu- 

las (3.10) and (3.11) are proven. 

Consider the matrix 
U(a) = -B(a).-lA (3.12) 

Its elements have the form (3.13) 
Q) 00 

u1.m = - 2 bl,kTk,m = 
exp 2aizk 

k=l 
K+(c,) &(&)l' kzl (51 +zk)K: (-zk)(zk--5m) 

From the last expression and the estimates in (3.2), It is clear that the 

matrix U(a) exists for all 0 < a < m and 

U(a)4 for a+oo (3.14) 

!l!he existence of the matrix B(a)Xo may be shown In a similar manner. 

Let us examine Equation (3.11) rewritten In the form 

2 = U (a)2 -B (a)X, (3.15) 

In the space m of Infinite, bounded sequences. The norm of the operator 

U(a) is defined by a, 

(3.16) 

We will show the correctness of this definition, and begin with the fol- 

lowing estimates: 



(3.17) 

To prove the existence of Sg (a) it is sufficient to establish the con- 

vergence of the iterated infinite series 

k~l/bl~klm~IiTk.mI (3.18) 

for all 4 . 

The Inner series converges for every rixed R by virtue of (3.2). EN 

then the iter%ted series also converges, since the coefficients bl.g mase 
exponentially as k-r-. 

Since series (3.18) converges absolutely, the corresponding doubly lnfl- 

nlte series also converges, the summation of the two having the identical 

value. 

It is evident from (3.1) that ibl,k( >/bt,kj (E = 2, 3, , . , ), so that 

yp& (a) = Sl (a) (3.19) 

Thus* the existence of the norm (3.16) has been proven. 

From the definition of the norm, it may be seen that 

II u Wll - 0 for fJ-+cQ 

It foflows from the above, that there exists %n u,, such that, 

and Ocqcl, the following Inequality holds 

1 u (4ll< 4 

(3.20) 

for a > a, 

But then it Is easily shown that, for aO< u < 0 the operator 

(3.21) 

u(a) m%PS 
from m into I . Since m is a Banach space, we can apply B%nach's theo- 

rem on the existence of solutions to Equation (3.15) in the region ao< a<= 

[4]. The solution Itself may be obtained by the method of successive approx- 

imations, whereby convergence to % unique solution la obtained. Assuming 

the first term to be B(a)Xo, the solution to (3.15) is obtained In the form 

Z = - (I-t- jjl ok (a)) B (a) XC (3.22) 

Or, using Formulas (3.8) and (3.10) to return to the original unknown x, 

we obtain the solution of Equation (3.4) In the form 

,x = XII- -‘A L I+ $jl (-- l)k (R (a) . -‘A)“] R (a) X0 (3.23) 

In the same manner, the corresponding system ylelds Xl-. 

To determine the limit of applicablllty of Formula (3.23), it is necessary 

to solve Equation 
(3.24) 
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the maximum positive root of which will be a, . It is difficult to solve 

(3.24) in general form, but we may solve an approximate equation which yields 

an upper bound a*, i.e. a,< a*. 

Such an equation Is given by 

s, (a) = 1 
which may be represented In the form 

(3.25) 

Clearly, If .S < 1 , Equation (3.25) has no real roots and the solution 

(3.23) holds for 0 c a < m . 

If S>l, EquatIon(3.26) has a single positive root a*, and the solu- 

tion (3.23) holds, at least, In the region a*< a < m . 

Since the curve (3.25) is convex downwards, Newton's method will always 

converge to a+, provided the initial value of the root is taken as O<a,*< m 

such that ~(a,*) z 0 . If, for example, b,> 1 , then we can take 

Actual computations show, that the a* thus obtained Is an upper bound 
for the llmlt of applicability. The reson for this lies In the fact that 
the method of successive apProxImations will converge If the following series 
converges 

U(a) + us (u) + . I . + fin (4 + . . f 

Thus,we merely require that the foregoing series composed of the norm 
converge, whereas a* Is obtained from the approximate equation (3.25) which 
yields a larger root than Equation (3.24). 

Examining the structure of the coefficients 21 In Formula (3.23), It may 
be seen that, indeed, for large a 
tion is given by Formula (2.l3), 

the zeroth term of the asymptotic sofu- 
while the term whose Index is one in the 

asymptotic solution Is of order OCexp(- 2aT,)l . The above explains the 
wltle range of applicability of the zeroth term approximation (c.f. Cl)). 

4. As an example to which the above develo 
consider the case for which the function U-IL u) 'p 

ed method may be applied, 
Is given by 

u-'L(u) =- u-QalW (4.1) 

Aleksandrov ,In investigating the mixed problem of plane torsion of an 

etZ5~&ZyZ ii&n in (4 1) 
obtained a closed form solution of Equation (1.1) with 

. . He kindly communicated the result that, for 
n-0, thla solution Is given by 

(2k - I)!! (2r - i)l! e rr[(k+r)a+(r-k)n] 

%na 
;i 

40 (z) = 
4K [.-SLa]~f __&&%)0.6= 

k=O r=O 
2kll 2r!! 

O” 

XL 

(2m-- 1)!1 ~e-zxam 
2mI! 

rn* 1 (4.2) 

Here K(x) is the complete elliptic integral. 

We ~111 now construct the solution for (1.1) by the method developed above. 
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For this purpose, we list certain necessary expressions 

K (a) =-q , K+ (a) =i 
r ($42 -4 in) 1 
r (1 -iia/x) v/n Zl = nli, 5, = (r - ‘/‘A) ni 

1 l--1,2,... 
%,l==(r 

exp(- 2ad) 
- 1 -1/z) ni ' brJ=(r+&l/e)Xi' %=A ( r--1,2,... ) 

(2E - %)!I 
cl= (2Z)l! ' 

(2r - 3)!! (21 - I)lf 
ZLr= ~(2~-2)!!(22-2)l!(2~-2~+~) 

(4.3) 

and use Formulas (2.12) and (3.23) to construct the solution. 

It is evident from Formulas (4.2), (2.12) and (3.23) that the zeroth terms 
of the asymptotic expanslon of the two solutions are Identical. Now compare 
the numerical coefficients of these terms in the asymptotic expansions whose 
index is one, for example the coefficient of exp-2xa-n(a+X) 

In the solution obtained by Formula (3.23), this coefficient Is produced 
by the matrix -lAB(a)Xc, the general form of the element being 

The necessar 
3 

coefficient obtained from (4.4) when r - A = 1 Is '/- . 
In Formula (4.2 , this coefficient consists of two parts: 
and m=O weget 3/Xe,andfor k-O,r=l,and m=l 

for k=l,r=2 

The sum of these two is I/,. . 
we get (- 'lef. 

Similarly it will be found that the coefficient of exp ]--2fia--Fb(a+z)] 
equals 1/1e, and the coefficient of ex 
In the same manner it can be shown that ! 

[- 2na - 3n (a + z)] is /me. 
he coefficients of all ather terms, 

as obtained by the two methods, are equal. In other words, Formulas (2.12 
and (3.23) give the exact solution of integral equation (1.1) in c&se (4.1 , 1 
forall Oca<m. 

The proposed method may also be used for practical calculations, wherein 
the zeroth term of the asymptotic solution proves to be axtremely effective. 
In contact problems of elastic layers the zeroth term of the asymptotic solu- 
tion generally completely covers the range for small and medium thlchesses 
and even extends partly Into the region of large thicknesses. 

As an example, consider integral equation (1.1) with n = 0 for the case 

L(u) u u"+ 3.526~~ + 12.479 
U =-T u4-f 2.522~2 f 12.419 '-I 

(4.5) 

This case approximates the kernel of the integral equation which arises 
in connection with the plane contact problem for an elastic strip which rests 
on a smooth rigid substrate and Is acted on by a punch with a plane face cl]. 
The accuracy of approxkmatlon (4.5) Is representing the function L(u)/% 
for the contact problem 1s within 1.5s . Conflnl 

"c3 
ourselves to the zeroth 

term of the asymptotic expansion In Formulas (2.12 and (3.23) and summing 
therespective serles, we obtain an asymptotic solution In the form 

4(~)=~If(a+~)+f(a--~)-~tl (4.6) 

f(t)=(l -exp2n~/~)~~~~-0.113exp(--1.627t/h)sin(0.94r)t/h+0.436)+ 

+00.i13sin0.43Fexp(-3.13nt/h) ( E 
A=i(i -$) ’ h=$) 
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The term 
in computing 

Below, we 
(4.6) for A 

exP(- 3.13nt/h) In (4.6) arises as a result of the approximation 
the series. 

list some values ot aq(n)/A as computed by means of Formula 
= 2 and various values of x/a . The third line lists, for 

comparison, the corresponding results obtained In [5] by a method appropriate 
for large X . 

x/a-O, 0.2, 0.4, 0.6, 0.8, 0.95 
aq (2) / A = 0.97, 0.98, 1.01, 1.10, 1.38, 2.56 ('1.7) 
ag (x) / A = 0.96, 0.98, 1.02, 1.12, 1.42, 2.59 

The deviation In (4.7) does not exceed 3% . 

In conclusion, let us note that the proposed method is also applicable to 
the solution of equations of the second kind 

q (xi i 8 \ k (x - 4) q (E) dE = ncp (x) . 
(4.8j 

-a 

where, Instead of x(c) - L(c)/= , the function to be studied Is nl+ bL(a)/a. 

The author Is grateful to 1.1. Vorovlch and V.M. Alekaandrov for their 

constant Interest In this work and their valuable advice. 
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