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The investigation deals with integral equations arising in certain mixed
problems in plane elasticity, in partlicular plane contact problems concerned
with the action of a rigid punch on an elastic layer located on a rigld sub-
strate. The entire study 1s devoted to the construction of solutions to
Equation (1.1) when the parameter @ is large. Exact solutions to (1.1)
are obtained in the form of series which hold for a*< @ < » ., A corollary
to the results obtained here provides a rigorous basis for the method given
in [1]. Illustrative examples are glven.

1., Consider the integral equation
4
\Ee—Ba@®dE =™  (21<a, Imn=0) (1.1)
-G
whose kernel 1s of the form o
‘' L(u ;
k(t) =5 —i—)—costu du (1.2)
0
Here, L(u)/h is an even function which 1s real on the real axis and
meromorphic on the complex plane.

The function L(xl/z may be represented in the complex plane in the form

Lz __ Plz) _

where P(z) and @Q(&) are entire functions with the asymptotic form of thelr
zeros given by

Zn~ +iPn+8telnn G~ +iPrn+g+elnrn o) (1.4)

All constants in (1.4) are real. It is assumed that the function L(2)/z
has the following propertles:
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lim-L—(zﬂ=A for 20, L£Z)=O(z-ﬂ) for 2500, 0yt (1.0)

Property (1.5) imposes the following interrelations among the constants
B, b) g and Y
2(6—8)=Br  for 0, 0
b'—‘g=BT tor ¢; =0, ;=0 (16)
Assume that the zeros =2z, and (, are distinct. In the case of multiple
roots or in case the asymptotic roots are somewhat different from (1.3), all
of the results established below may be obtained in the same manner,
It is shown below that solution of Wiener-Hopf equation
(e o]
(te—Bf@aE=re  0<s<w (1.7)
0
results 1n the solution to an infinite system of linear algebraic equations

(1)

Thereupon, having obtained the general form of the asymptotlic solution of
(1.1) for a - = , we will show,that to obtain a solution to another infinite
system of linear algebralc equations (II) which is perturbed about (I), we
must transform it into (I). Accomplishing the transformation by the method
of successive approximations, we obtain the exact solution to Equation (1.1)
for a% @ < =

2, Let us note ‘certain properties of the kernel k(t¢t) defined in (1.2).
Utilizing the properties of Fourier integrals, it may be shown that
k@) =0 @), E@® =0(ni) 2.1)
respectively for 0< y < 0,5 and y = 0.5 for ¢ - 0 . In case O0.5<y<1,

the kernel #x(t) will be continuous. With the aid of the residue theory,
the kernel x(t) may be written in the form

[e ]
k() = 2\ srexp ilyt (s, = WP (§) [Q' (G)1™Y) (2.2)
r=1
with the series converging uniformly for all ¢ , except for ¢t = O with
O0< y s 0.5, in which case it has an integrable singularity.

Employing the Wiener-Hopf method, we will now obtain the solution to the
integral equation (1.7) [2], which may be written as
[s0]

o @) = e[ )17+ ) e (n) exp izt (23] <IZppr b 1<y (2:3)
=1
Here
a(m=I[K, M n—z)K,/ (—z]" (2.4)
ﬁ (1 4a/z,)expia/Bk
K (=V4 -2

IT (14a/t,)expia/Bk
k—

1
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= 2
Ilﬂ—a/%m“ﬂ—awﬁm (2.4)
- ® k=1
K(=VA4 m
I (4 —a/t,) exp(—ai/Bk)
k=1
with 2, and (, located in the upper half-plane.
Note that (2.3) and (2.%) hold for the following values of n
Imn > — Im ¢, Nz
By making use of the known properties of Laplace transforms, it may be
shown that -
fo(t) =0(@) (t —0) (2.5)

The latter is established by lnvestigating the asymptotic properties of
the Laplace transform of the function f, ({) and making use of the estimate

_o[ M +g/B—ia/p) - _ 26
K (@) =0[ Gt B= ] o, n—argal<n 20)

with % = 2 1n the first case of (1.6) and %k = 1 in the second case; I'(x)
is Euler's gamma function.

~ We now rewrite integral equation (1.7) employing the form of the kernel
k(x — £) given by (2.2) and the form of the solution [y (E) given by (2.3),
and integrate the result, bringing the integral sign inside the double sum-
mation sign. The justification for this procedure lies in the fact that
there 1is only a finite number of points at which the series is not uniformly
convergent, and at these points the function is integrable.

The result thus obtalned is

&k(x—&)f,.(&,)dg K(n)z x ’nzexpznx—{—

0

+2z2 ¢ () (2, C” )exp 121 —

e () .
_zz s'(K(ﬂ)C —— Z - )exng,x @.7)

The summation of the series in the first term in (2.7) may be found in
the followling manner:

xQ

S 1 — ) einG-®) g = 2.8
K('I)ZC”—']“ K () i‘mgk(’” B enedt &5

k(y) e dy + S k(y)énudy] K(ﬂ) S % (y) ei™v dy =

L/fwg

= &g lin [

Here the asymptotic behavilor of the zeros of (1.4) has been taken into
account.
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The right-hand side of (2.7) must be equal to mef™, 1inasmuch as f, ()
is an exact solution of integral equation (1.7). Hence, taking Into account
{2.8), we have the identity

22, ¢ (n)(z g )expzz,x—

o () :
- S’(K(H)C——n_i_z i )expLC,xEO (2.9)

r=1

In view of the linear independence of the functions €Xp izx and CXp il,z,
the immediately preceding identity ylelds directly

%lg 7w =0 t=1,2...) (2.10)
o ‘
@ Mmi—n+2Jc_J*0 (r=1,2,...) (2.11)

Thus, if f, (:l:) 18 a solution of integral equation (1.7), the coefficlents
¢; () satisfy the infinite system of equations (2.11), together with (2.10).

We will now determine the general form of the solutlon g, (x) to the
integral equation (1.1). Namely, we will show that 1t takes the forn

ga(2) = Bo(a, e+ D) [By' (a, m) oxp iz (a +2) +

k=1
-+ By™ (a, n) exp iz (2 — x)] (2.12)
As a preliminary step, we will examine the result of substituting the
zeroth term in the asymptotic form [1] into integral equation (1.1)

ga° (2) = i, (a + 2) + €% _, (a — 7) — K7 (1) ei™= (2.13)

The substitution of ¢,° () into (1.1) and integration, taking into account
(2.8), (2.10) and (2.11), ylelds

\ke—bec@at =

= meine 4 ) s, Z} ng:)z exp [2aiz; +iL, (@ —2) — ine] +

r=1 I=1

+ iz Sy }] Z(+ exp [2aiz; + if, (¢ + z) + ina] (2.14)

r=1 I=1
Let us examine the integral equation satisfied by the remainder of the
terms in the asymptotic expansion entering (1.1). Writing the remainder of

the terms in the form qn* (xr) = g,(z)— q-no (x) (2.15)

{here gn {(z) 13 the exact solution of (1.1)), we obtain, upon substitution
into (1.1),
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Vrebar@at=— 2 o 3} TR (o () exp iy o — 2) — el +
=1 =1 T
+ ¢ (— ) exp [iLy (a 4 z) + inal} (2.16)

We now apply, in turn, to (2.16) the method of separating the zeroth term
of the asymptotic expansion [1]. This may be accomplished by solving the
integral equation

oo
(Fe—br @t =nexpite O<z<oo) (2.47)
0
Note that the zeroth term of the asymptotic expansion in the solution of
(2.16), whose index will be one in the solublon to Equation (1.1), will be
found to contain a small parameter of the form exp 2aiz.

The solution of the integral equation (2.17) may be obtained wilth the aid
of (2.3) and (2.4), replacing n with ¢(, , whereupon the solution will be,
as before, a combination of the functions exp izit. In the same manner, it
may be found that all subsequent terms in the asymptotilc solution Qn(13 will
have the same structure, since each step will require the solution of an
equation of the form (2.17).

Thus, Formula (2.12) is proven.

It is now necessary to determine the coefficients po(2, n), BS(e, n)
and pB;{(a, n) in the expansion {2.12). We will show that these coefficients
satisfy some infinite system of linear algebraic egquations (II). For this
purpose, we substitute qn(ag, in the form given in {2.12) into integral equa-
tion (1.1), and take x(t) in the form (2.2). Upon integration, and taking
into account (2.8) and (2.10), we obtain

Sk(x—ﬁ)q,,<§)d§~2z30(a, e e

r=1

Bo(a, e | <y (Bff (a, ) | Bi(a,n)exp iz .
- ZZ Sr {[ C —MN +I§ \ gr_zl + §r+€l >]0Xp lC.—(a.;»x).g.

By(a, m) ¢ B (a,m) | B*(a, m)oxp2aiz L
+[°§~M +Z<§r~z1 + 2L NP oxp it (e —2)}  (2.18)

We now requlre that the right-hand side of (2.18) equals gein®, This
leads to the following conditilons

Bo(a, m) =K (n)

By it < (a, n) , By (a, m)exp2aiz;
g, — +21(Cr~—zz + R )~0
(r=1,2.. (2.19)

Boeiﬂa < " (a, "]) l+ (a, "]) exp 2a£z; —
oo 2 (R S = 0
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If we can find the B;* (g, m) and B, (@, M), which satisfy the infinite
system (2.19), we will have obtained the solution to Equation (1.1).

Comparing the second and third systems of equations in (2.19), we obtain

B/*(a,m) =B/ (a, — 1) (2.20)

Deflne
zF = Bi* (a, ) £ B; (a, M) (2.21)
Addition and subtraction of the second and third systems of equations in
(2.19) leads to the conclusion that, in order to find the solution of Equa-

tion (1.1), it is sufficlent to obtain the solution of an infinite system of
equations of the form (case z;%)

[en] Y .
{ exp 2aiz, K1) | et K ()
an 3 ( z =0 (r=12..)(2.22
EI Cr“zl+§r+zl 1+ Cr_“ + &1 ( ’ S )( )
Hereinafter, in addition to (2.11), it will be necessary to consider a
system of the form (2.11) but with n = ¢, . Constructing the above system
of equations similarly to (2.11), we obtain

1 i EM () 0 ftor kzkr, 1, k=1,2,... sp6i(Gr)
i I=1 “z-k—__—zl— = { 1 for k=r (Tlr = mi ) (2.23)

The problem may now be stated as follows: given the solutions to systems
{2.11) and {2.23), find the z; in system (2.22).

3. Let us write the problem in matrix form. Introduce the notation

d. = 2 {f, cos na — 7 sin na)
T Kmm—5h

xol(n) :c(ﬂ)e~1ﬂa+cl(~—~n) etina, 1:[, r = K+(§r) K*l(wzl) (zg — gr) (K_.l (gr)]’ (3.1)

1 .
_— b exp 2aiz
Ay, 1 Tr—at y p s

1
AL SR

By utilizing (1.4), (2.4) and (2.6), together with the properties of
Euler's gamma functions, the following estimates are obtained:

Cr (n) !x—»oo =0 (kY—l)’ ! Tk, r {k—-»oo =0 (]twl)’ ‘ Tk, r !r-—»oo =0 (rl_y) (3~2)
The second estimate in (3.2) is for fixed r ; the third estimate is for
fixed k . We now introduce the matrices

A=(ar1), B@)=(0n), TA=(n), D=(dr) 3-3)
as well as the column matrices X = (z) and X, = (z° (1))

The problem formulated at the end of Section 2 may now be stated as fol-
lows.

To find a column matrix X, satisfying the equation
(A+B@)X=0D (3.4

i1f we are given the column matrix J, satisfying

AX,=D (3.5)



876 V.A. Babeshko

as well as ~'4 , the right-hand inverse of 4 , i.e.
AA =T (3.6)
where I 1s the unit matrix.

Note that. the matrix p(a) obviously has the following property

B(a -0 (a—»o) (0 1is the zero matrix) (3.7
Reformulate (3.4) in terms of Y , which is defined by
X=X,+7Y (3.8)
so that we obtain, with the aid of (3.5),
AY = — B (a)Y — B (&)X, 3.9)
We seek a solution in the form
Y = -147 (3.10)
(2 1s a new unknown), and utilize (3.6) to obtain
Z = —RB(a)--'4Z — B ()X, (3.11)

Note that, in order to make use of the right inverse employed 1in obtain-
ing (3.10), 1t 1s necessary to prove [3] the assoclative property of the pro-
duct A"'4Z . However, we can show that this operation is permissible with-
out proving the associative property, by an investigation of the subsequent
terms in the asymptotic series, obtalned from Equation (2.16). Thus, Formu-
las (3.10) and (3.11) are proven.

Consider the matrix

U(a) = — B (a)--14 (3.12)
Its elements have the form (3_13)
e 0] o0 .
_ . 1 exp 2aiz,
“om == 3 bn = O TAET B & K e

From the last expression and the estimates in (3.2), 1t is clear that the
matrix U(a) exists for all O0< ¢ < » and

U(d)'—'>0 for @ — o0 (314)
The exlstence of the matrix p(a)y, may be shown in a similar manner.
Let us examine Equation (3.11) rewritten in the form
Z =U (a)Z — B (a)X, (3.15)
in the space m of infinite, bounded sequences. The norm of the operator

U(a) is defined by oo
|V (a) ] = sup mgl [ @g,m | (3.16)

We will show the correctness of this definition, and begin with the fol-
lowing estimates:



Asymptotic method applicable to the solution of integral equations 87 T

oo o L= e e o ]
IV @1=suwp 3 | ¥ batim| <sup B 3 [ bux-Tam| <

me=1 K==l

<sup N 3 [k | Thm| = 0D 1 (a) (3.47)

To prove the existence of Sp(g) 1t 1s sufficlent to establish the con-
vergence of the iterated infinlte series

élbz,kl § |tk m] (3.18)

m=1
for all ¢ .

The inner series converges for every fixed # by virtue of (3.2}. But
then the iterated series alsc converges, since the coefficlents bhk decrease
exponentially as %k - = ,

Since serles (3.18) converges absolutely, the corresponding doubly infi-
nite series also converges, the summation of the two having the identilcal
value.

It is evident from (3.1) that |byx| >|hx| (I =2,3,...), so that
sup 5 (a) = S, (o) (3-19)
Thus, the existence of the norm (3.16) has been proven.
From the definition of the norm, it may be seen that
U @) -0 tor @00 (3.20)
It follows from the above, that there exists an 4, such that, for a > g4
and 0 < ¢ < 1, the following inequality holds

U@ <4q (3.21)

But then 1t is easily shown that, for as< ¢ < « the operator U{a) maps
from m intoc m . Since m 1s a Banach space, we can apply Banach's theo-
rem on the existence of sclutions to Equation {3.15) in the region dg< G< o
{4]. The solution itself may be obtained by the method of successive approx-
imations, whereby convergence to a unique solution 18 obtained. Assuming
the first term to be pg(a)X,, the solution to (3.15) is obtained in the form

Z=_ (1+ é‘ U"(a))B (a) Xo (3.22)

Or, using Formulas (3.8) and (3.10) to return to the original unknown 1,
we obtain the solution of Equation (3.4) in the form

X =Xo—"a[r+ 208 @ A B@X,  (3.23)
In the same manner, the corresponding system yilelds ;.

To determine the limit of applicability of Formula (3.23), it is necessary
to solve Equation
1U (@] =1 (3.24)
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the maximum positive root of which will be a, . It is difficult to solve

(3.24) 1in general form, but we may solve an approximate equation which ylelds
an upper bound ¢%*, 1.e. a,< a¥.

Such an equation is given by

S, (a) = 1 (3.25)
which may be represented in the form
o -2at =
Y(a)= D) bpe ™ 1 =0 (S:Ebk) (3.26)
k== K==1

»1 [so]
bk:TCx—f-Zklmglltk,m|>O: T = Im 23 >0
Clearly, if § < 1 , Equation (3.25) has no real roots and the solution
{(3.23) holds for O<a < o ,

If §> 1, Equation (3.26) has a single positive root a*, and the solu-
tion (3.23) holds, at least, in the region a%< a < » ,

Since the curve (3.25) 1s convex downwards, Newton's method will always
converge to a®, provided the initial value of the root is taken as 0<ag< =

such that ¥{a,*) > 0 . 1If, for example, b5 > 1 , then we can take
¥, Inby
o 2t,

Actual computatlions show, that the a* thus obtained 1s an upper bound
for the limit of applicability. The reson for this lies 1n the faet that
the method of successive approximations will converge if the following series

converges U@+ U@+ ...+ U0 @+...

Thus, we merely require that the foregoing series composed of the norm
converge, whereas a* 1is obtained from the approximate equation (3.25) which
yvlelds a larger root than Equation (3.24).

Examining the structure of the coefficients z; in Formula (3.23), it may
be seen that, indeed, for large a the zeroth term of the asymptotic solu-
tion is given by Formula (2.13), while the term whose index is one in the
asymptotic solution is of order Olexp(— 2a7,)] . The above explains the
wide range of applicability of the zeroth term approximation (c.f. [1]).

4, As an example to whilch the above developed method may be applied,
consider the case for which the function u *L(u) is given by

ulL (1) = uManky 4.1

Aleksandrov,,in investigating the mixed problem of plane torsion of an
elastic layer fl}, obtained a closed form solution of Equation (1.1) with
the kernel as given in (4.1). He kindly communicated the result that, for
n = 0, this solution 1s given by

[ o] [eo]
3 3 2k — O @r — DU senarr-rx]
0O

- 211 271

k=0 re=

g0 (z)= 0.5 £
4K [ a5 ) S| [En ] s
2Zmlt

(4.2)

Here K(x) 1s the complete elliptic integral.
We will now construct the solution for (1.1) by the method developed above.
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For this purpose, we list certain necessary expressions

tanh T {Yy —i 1
K@= K@=T(hm v a= G=C—tx

o 1 _ exp (— 2axnl) 2 <l=1,2,.._
e O R gy gt YA P R O el (N B VA P R el Py | rzi,z,...)
(21— 1l (2r — 3N 21 — il

G=TEnn 0 ST @i @ — i@l —2r+ 1) s
3)

and use Formulas (2.12) and (3.23) to construct the solution.

It is evident from Formulas (4.2), (2.12) and (3.23) that the zeroth terms
of the asymptotic expansion of the two solutions are ldentical. Now compare
the numerical coefficients of these terms in the asymptotic expansions whose
index is one, for example the coefficient of exp’z"““"(“*x)

In the solution obtalned by Formula (3.23), this coefficient is produced
by the matrix ~*4p(a)X,, the general form of the element being

0 [ee] (o]
A N Z T, b 1t @a-nu Z ((Zr —~—1)H)2 exp (— 2nar) (4.4)
pa LKk, r — o - *
e 2 (21 —2)1 it 2r!l (I+r
The necessary coefficlent obtained from (4.4) when r = £t =1 is 1/, .
In Formula (4.2), this coefficlent consists of two parts: for % =1, I = 2
and m = 0 we get 3/iq, and for Ak = O, r =1, and m =1 we get (—1/g).
The sum of these two 13 /4.

Similarly it will be found that the coefficlent of exp [—2ma—2n (a-+2)]
equals 1/, , and the coefficient of oxp [— 2na — 31 (a + 2)] 18 /e .
In the same manner 1t can be shown that the coefficlents of all other terms,
as obtained by the two methods, are equal. In other words, Formulas (2.12;
and (3.23) give the exact solution of integral equation (1.1) in case (4.1),
for all O< e < = .,

The proposed method may alsc be used for practical calculations, wherein
the zeroth term of the asymptotic solution proves to be axtremely effective,
In contact problems of elastic layers the zeroth term of the asymptotlc solu-
tion generally completely covers the range for small and medium thicknesses
and even extends partly into the reglon of large thicknesses.

As an example, consider integral equation (1.1) with n = O for the case

L(x) u ut3.526u3 - 12.479
==tanh—— u-l
u 2 ud - 2.522u? + 12.479

(4.5)

This case approximates the kernel of the integral equation which arises
in connection with the plane contact problem for an elastic strip which rests
on a smooth rigid substrate and is acted on by a punch with a plane face [1].
The accuracy of approximation (4.5) iz representing the function ZL(u)/u
for the contact problem 1s within 1.5% . Confini ourselves to the zeroth
term of the asymptotic expansion in Formulas (2.12) and (3.23) and summing
the respectlve serles, we obtaln an asymptotic solution in the form

2A
g@)=—Fp e+ 2)+f(a—a)—1] (4.6
§(8)=(1 — exp 2 £/h)"" — 0.113 exp (—1.627¢ / h)sin (0.940 ¢ / h + 0.436) -+
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The term exp(— 3.13nt/n) in (4.6) arises as a result of the approximation
in computing the series.

Below, we list some values of aq(x)/A as computed by means of Formla
(4.6) for L = 2 and varilous values of x/a . The third line lists, for
comparison, the corresponding results obtalned in [5] by a method appropriate
for large A .

z/a=0, 0.2, 04 0.6, 08, 0095
ag (z) / A = 0.97, 0.98, 1.01, 1.10, 1.38, 2.56 (4.7)
ag (z)/ A = 0.96, 0.98, 1.02, 1.12, 1.42, 2.59

The deviation in (4.7) does not exceed 3% .

In conclusion, let us note that the proposed method is also applicable to
the solution of equations of the second kind

—
N
RN

2z

q(x)+8 \ k(z—E)q(£)dE =no (z)

[CRar F~Y

where, instead of K(x) = L{a)/a , the function to be studied 1s n*+ 6L(a)/a.

The author 1s grateful to I.I. Vorovich and V.M. Aleksandrov for their
constant interest in this work and their valuable advice.
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